Distinguished Connections on (j2 = ±1)-metric Manifolds
نویسندگان
چکیده
We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of (J2 = ±1)-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection.
منابع مشابه
Geometry, and Nonsymmetric Metrics on Nonholonomic Manifolds
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off–diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کاملLinear Connections on Light-like Manifolds
It is well-known that a torsion-free linear connection on a light-like manifold (M,g) compatible with the degenerate metric g exists if and only if Rad(TM) is a Killing distribution. In case of existence, there is an infinitude of connections with none distinguished. We propose a method to single out connections with the help of a special set of 1-forms by the condition that the 1-forms become ...
متن کاملEinstein Gravity , Lagrange – Finsler Geometry , and Nonsymmetric Metrics
We formulate an approach to the geometry of Riemann–Cartan spaces provided with nonholonomic distributions defined by generic off-diagonal and nonsymmetric metrics inducing effective nonlinear and affine connections. Such geometries can be modelled by moving nonholonomic frames on (pseudo) Riemannian manifolds and describe various types of nonholonomic Einstein, Eisenhart–Moffat and Finsler–Lag...
متن کاملNonholonomic Ricci Flows: III. Curve Flows and Solitonic Hierarchies
The geometric constructions are performed on (semi) Riemannian manifolds and vector bundles provided with nonintegrable distributions defining nonlinear connection structures induced canonically by metric tensors. Such spaces are called nonholonomic manifolds and described by two equivalent linear connections also induced unique forms by a metric tensor (the Levi Civita and the canonical distin...
متن کاملOn three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کامل